كتاب دليل الهندسة الانشائية

السلام عليكم ورحمة الله وبركاته

كتاب دليل الهندسة الانشائية

للتحميل اضغط على الرابط في الاسفل

http://www.mediafire.com/?qnzwfzyytnn

التشققات في الخرسانة


التشققات في الخرسانة 

تعتبر التشققات في الخرسانة من أهم العناصر التي تعطي مؤشراً واضحاً عن حالة المنشأ فهي تتباين تبعاً لخطورتها وتأثيراتها على المنشآت ومدة ظهورها كما تتباين من حيث اتساعها وعمقها ودرجة تأثيرها على المنشأ.
لذلك، فقد قام العلماء بتقسيم التشققات وفقاً لعدة معايير منها:
- حسب نوع التشققات وتأثيرها على المنشأ : 
1- التشققات البسيطة.
2- التشققات الخطيرة.
- أو حسب طبيعتها:
1) تشققات ذاتية: ناتجة عن الانكماش اللدن أو الهبوط أوالتقلص المبكر أو الجفاف.
2) تشققات خارجية: ناتجة عن زيادة الحمولات أو سوء استخدام المبنى أو سوء التنفيذ أو سوء التصميم أو عدم استعمال مواد مطابقة للمواصفات.
- أو حسب أسباب التشققات:
1- تشققات غير إنشائية.
2- تشققات إنشائية.
- أو حسب تصلب الخرسانة:
1- تشققات قبل التصلد.
2- تشققات بعد التصلد.
وغير ذلك من المعايير التي تتفق جميعها على أن ظاهرة التشقق في الخرسانة هي ظاهرة خطيرة يجب دراستها فور مشاهدتها أو الوقاية ما أمكن من حدوثها ثم معالجة ما ظهر، وذلك لتلافي المشكلات قبل حدوثها.
• أسباب التشققات : 
1- تشققات الانكماش اللدن : 
تنتج بشكل رئيسي بسبب الجفاف السريع نتيجة تعرض الأسطح لتيارات هوائية شديدة مما يؤدي إلى تبخر الماء بدرجة أعلى من معدل خروج مياه النزف في الخرسانة وينتج عن ذلك إجهادات شد تؤدي إلى التشققات.
2- تشققات الهبوط اللدن : 
تحدث عندما تكون هناك نسبة عالية من النزف والهبوط وذلك بعد انتهاء عمليات الصب والدمك والإنهاء حيث تستمر زيادة كثافة الخرسانة ذاتياً طالما أنها في الحالة اللدنة وعندما تعاق هذه الحركة أو تكون مقيدة بواسطة التسليح أو الكوفراج أو غير ذلك تؤدي إلى حدوث تشققات مجاورة للعناصر المعيقة للحركة حيث تظهر التشققات فوق قضبان التسليح الثابتة وعلى شكل التسليح وتظهر بشكل تقوس عند التقاء العمود بالجوائز.
3- تشققات التقلص الحراري المبكر:
تتولد أثناء عملية التصلب المبكر حرارة ناتجة عن التفاعل الكيميائي بين الاسمنت والماء وغالباً ما تتولد كمية كبيرة من الحرارة وترتفع درجة حرارة الخرسانة أكثر بكثيرة عن درجة حرارة الجو المحيط وخاصة في العناصر الضخمة، وبعد أيام قليلة لا تزيد عن /10/ أيام يهبط معدل تولد الحرارة إلى أقل من معدل فقدانها (لانخفاض درجة التفاعل) فتنخفض درجة حرارة الخرسانة إلى درجة حرارة الجو المحيط، وخلال هذه التغيرات التي تطرأ على درجة حرارة الخرسانة تعاق حركة التقلص الناتجة عن انخفاض درجة حرارتها وتتولد نتيجة لذلك إجهادات شد تسبب التشققات.
وتتناسب هذه الإجهادات مع مقدار التغيير في درجة الحرارة ومعامل التمدد الحراري ومعامل المرونة ودرجة إعاقة الحركة.
4- تشققات الانكماش الناتج عن الجفاف : 
تظهر عندما يتعرض تقلص العناصر الإنشائية ذات التسليح الصغير إلى منع هذا التقلص عن طريق بعض التثبيت الإنشائي.
5- التشققات الشبكية (التشققات السرطانية):
تنتج عن إجهادات الشد التي يتعرض لها السطح وذلك نتيجة الفروق الواضحة في كمية الماء السطحية عن تلك المتوفرة في الطبقة الأدنى منها (الداخلية) وهي لا ترتبط بالزمن وإنما بالظروف المناخية القاسية كانخفاض الرطوبة النسبية، وبنوع الكوفراج، وكمية الاسمنت في الخلطة، وطريقة الهز للبيتون مما يؤدي أحياناً إلى طبقة سطحية ناعمة وغنية بالماء.
6- التشققات بسبب تآكل التسليح : 
وهي تنتج عن تأكسد حديد التسليح بسبب رطوبة الجو المحيط أو تسرب المياه من مواسير المياه أو زيادة نسبة الكلوريدات بالخلطة أو التحول الكربوني للخرسانة الخارجية أو حدوث تشققات نتيجة أسباب أخرى غير الصدأ مما يسهل وصول الرطوبة إلى التسليح ويبدأ الصدأ.
7- التشققات بسبب التفاعل القلوي للحصويات:
وهي تنتج عن تفاعل القلويات مع السيليكا التي تظهر عند إماهة الاسمنت ومصدر هذه القلويات هو إما أملاح معدنية في الاسمنت أو في الإضافات أو استخدام مياه جوفية أو مياه البحر أو مواد إكساء تحتوي عليها.
8- التشققات الناتجة بسبب تفاعل الخرسانة مع الكبريتات : 
تنتج عن استخدام مياه تحتوي على كبريتات قابلة للذوبان أو من تربة تحتوي على كبريتات، وعندما تتسرب هذه المواد إلى البيتون وتتفاعل مع ألومينات الكالسيوم المائية تتفاعل معها مكونة ألومينات الكالسيوم الكبريتية ويصاحب ذلك زيادة كبيرة في الحجم تؤدي إلى إجهادات شد موضعية عالية تسبب تآكل الخرسانة وتصدعها مع الزمن. 
9- التشققات الإنشائية : 
9-1- تشققات بسبب أخطاء التصميم :
تنتج هذه الأخطاء لبعض الأسباب التالية أو جميعها:
‌أ- عدم اتباع اشتراطات المواصفات القياسية والقواعد التطبيقية لتصميم وتنفيذ الخرسانة المسلحة (مثل تصميم الخلطات الخرسانية).
‌ب- اختيار جملة إنشائية غير مناسبة.
‌ج- الأخطاء الحسابية.
‌د- استعمال تسليح غير كافي.
‌ه- إهمال تأثير الإجهادات الحرارية.
‌و- إهمال تأثير القيود على حركة الأعضاء المعرضة لتغيرات حجمية.
‌ز- إهمال تفاصيل حديد التسليح وأماكن توقفها وتوزعها والاختلاف في أقطارها وعدم الاهتمام بتفاصيل حديد التسليح وحديد الوصل بين العناصر والحديد الأفقي واستعمال حديد مختلف في نفس العنصر.
‌ح- نقص البيانات أو عدم توضيح أماكن فواصل التمدد والتقلص وقيمة الغطاء الخرساني وعدم تحديد أماكن فواصل الهبوط وعدم تحديد أماكن فواصل الصب.
‌ط- أخطاء ناتجة عن افتراض خاطئ للأحمال وحركة الأوزان على المنشأ أو عدم الأخذ بالاعتبار بعض الأحمال مثل الرياح والزلازل.
‌ي- عدم أخذ تأثير تركيز الإجهادات في الاعتبار وبالأخص عند الأركان الداخلية.
‌ك- سوء اختيار الأساسات المناسبة للتربة الحاملة للمنشأ.
‌ل- عدم حساب الهبوط الكلي المتوقع تحت الأساسات ومقارنته بالحدود المسموح به لنوعية التربة.
‌م- عدم الاهتمام بتصميم الشيناجات القوية الرابطة للأساسات وخصوصاً للأساسات التي تقع بجوار المنشآت القائمة.
‌ن- إهمال الظروف المحيطة بالموقع والتي قد تؤثر على التصميم مثل منسوب ونوعية أساسات المباني المجاورة والتغيير المنتظر في منسوب المياه الجوفية.
9-2- تشققات بسبب أخطاء التنفيذ:
1- عدم الاهتمام بالتفاصيل المعطاة بالمخططات واعتماد المهندس المنفذ على خبرته الخاصة والشخصية.
2- عدم العناية بقراءة الملاحظات والتحذيرات الموجودة على المخططات.
3- عدم الاتصال بالمهندس المصمم لاستيضاح بعض النواحي الفنية الغير واضحة على المخططات.
4- عدم تتبع التعديلات المتتالية والمراحل الخاصة بالتصميم وتعديلاته.
5- عدم دراية وإلمام المهندس المنفذ بالمواصفات والشروط الفنية الخاصة بالمنشأ موضوع التنفيذ.
6- التخزين غير المناسب للمواد سواء الاسمنت أو البحص أو الرمل أو الإضافات.
7- عدم فحص المواد المكونة للخرسانة وذلك لبيان مدى تطابقها مع المواصفات القياسية.
8- استخدام حديد تسليح صدأ أو عليه شحوم وزيوت أو طين أو مكونات أخرى تؤدي لعدم تماسكه مع الخرسانة بعد الصب.
9- استخدام حصويات غير متدرجة وغير متطابقة مع نسب تصميم الخلطة أو تحتوي على شوائب مثل الأملاح أو المواد العضوية أو مواد ناعمة كثيرة.
10- استخدام اسمنت منتهي المدة أو اسمنت لا يتلاءم وطبيعة الظروف الجوية المحيطة بالمنشأ أو لا يتلاءم ونوعية الأملاح الموجودة بالتربة والملاصقة مباشرة للأساسات.
11- استخدام مياه غير مناسبة للخلط مثل مياه البحر أو مياه جوفية تحوي على أملاح أو حموض ضارة أو استخدام مياه تزيد عن الحد المسموح به.
12- وجود عيوب في الغطاء الخرسانى من حيث قوته واتزانه وأبعاده وعدم نفاذيته ومنسوبه مما يؤدي إلى حدوث هبوط أثناء وبعد صب الخرسانة.
13- عدم المعايرة الصحيحة للمواد المستخدمة.
14- عيوب في طريقة الصب من ناحية الخلط أو النقل أو الهز أو المعالجة أو استخدام كميات زائدة من الماء أو المبالغة في أعمال الهز وعدم اتخاذ الحماية اللازمة للخرسانة في ظروف الحرارة الشديدة الجفاف والرياح الشديدة أو التجمد أو ضمن الماء أو الفك المبكر للكوفراج قبل وصول الخرسانة إلى المقاومة المناسبة لتحميلها وغير ذلك.
15- إهمال القيام بتنفيذ الاختبارات المعملية اللازمة للتأكد من جودة الخرسانة مثل تعيين مقاومة الضغط ودرجة الامتصاص أو نسبة الدمك أو قابلية التشغيل.
16- أخطاء تعديل حديد التسليح من حيث أنواع أو أقطار الحديد وعدم وضعه في أماكنه الصحيحة والمسافات المحددة بالمخططات وبالتشكيل والأطوال والامتداد المناسب مع التثبيت الجيد للحديد المدد والمكسح والأتاري.
17- هز الحديد بعد شك الخرسانة ابتدائياً وبالأخص هز أسياخ الأعمدة مما يؤدي إلى سقوط الأتاري وتراكمها في أسفل العمود أو تباعدها عن الحدود المقررة مما يؤثر على كفاءة العمود.
18- عدم ترك مسافة كافية بين حديد التسليح والكوفراج الخشبي للحصول على التغطية المناسبة طبقاً لنوع العنصر والمواصفات الخاصة به.
19- عدم وضع كراسي تحت حديد تسليح البرندات (الأظفار) مما يؤدي إلى سقوط الحديد العلوي أثناء الصب إلى الأسفل وعدم وجود حديد في مناطق الشد.
20- عدم وضع وصلات الحديد في الأماكن المناسبة وبالأطوال المحددة والعدد الكافي للحديد وبنفس القطر.
21- عدم الاهتمام بتنفيذ فواصل الصب في الأماكن الغير معرضة لقوى وإجهادات عالية وعدم تخشين سطحها من أجل التماسك عند متابعة الصب.
22- عدم الاهتمام بتنفيذ فواصل التمدد والهبوط في المنشأة أو العناصر الإنشائية بشكل جيد وعدم العناية بنظافتها ومعالجتها وفق الأصول مما يعني أنها ستصبح منطقة ضعيفة لتسرب الرطوبة والمياه الجوفية التي تؤثر على المدى البعيد في حدوث صدأ في التسليح ثم تشقق الخرسانة.
23- عدم استقامة الأعمدة وخاصة رقاب الأعمدة.
24- عدم نزح المياه من المناطق المجاورة للأساسات.
25- الصب على تربة غير صالحة تحتوي على مواد عضوية أو طين.
26- عدم الاهتمام بمواد الردم بين الأساسات واستخدام تربة تحتوي على مواد كبريتية أو عضوية تعمل على تآكل حديد التسليح.
27- عدم عزل الأساسات في حالة ارتفاع منسوب المياه الجوفية عن منسوب الأساسات.
28- الخطأ في تطبيق أساليب التنفيذ والخلط بينها مثل تنفيذ النواة المركزية وبارتفاعات كبيرة باستخدام طريقة القوالب المنزلقة مثلاً وإنشاء المبنى بالطريقة التقليدية (قوالب عادية) مما يؤدي إلى هبوط نسبي غير محسوب.
29- الخطأ في تنفيذ أعمال الإكساء التي تؤدي إلى حدوث التشققات والعيوب في البناء مثل عدم الاهتمام بالتمديدات الصحية مما يؤدي إلى تسرب المياه الآسنة إلى الجدران والأساسات وتفاعلها مع حديد التسليح.
30- كسر أو فتح ثقوب كبيرة لتمرير التمديدات الصحية الأرضية في أماكن خطرة.
31- عدم تنفيذ طبقات العزل للرطوبة أو الماء خصوصاً بالأسقف الأخيرة للمنشأ أو بالأقبية أو تنفيذ ذلك بطريقة سيئة غير مطابقة للمواصفات الفنية أو استخدام مواد عازلة غير سليمة.
32- عدم الاهتمام برص التربة في الأقبية بشكل جيد قبل التبليط مما يؤدي إلى تكسير هذه الأرضيات وتسرب المياه إلى تربة التأسيس الأمر الذي يؤدي إلى هبوط تلك الأساسات بشكل متفاوت يؤدي لحصول تشققات خطيرة بالمنشأ.
33- القيام بصب البيتون من ارتفاعات عالية مما يؤدي إلى فصل مكوناته وبالتالي حصول فجوات فيه (التعشيشات).
34- التحفير الغير سليم من قبل عمال التمديدات الكهربائية والصحية وخصوصاً في الأعمدة.
9-3- التشققات نتيجة هبوط التربة وفروق الهبوط النسبية للأساسات : 
1- بسبب انكماش وانتفاخ التربة بسبب تسرب المياه نتيجة الأمطار أو كسر أنبوب مياه فإن التربة تنتفخ ويزداد حجمها وهذه الحركة أكثر وضوحاً في التربة المتماسكة الطينية ثم بعد إزالة الأسباب تنكمش التربة مما يؤدي إلى تصدعات في المباني الطويلة قليلة الارتفاع.
2- بسبب التضاغط نتيجة استثمار المبنى فإن الأحمال تؤدي إلى ضغط يسبب هبوط في التربة يكون كبيراً وسريعاً في حالة التربة الرملية وإذا أنقصت الأحمال نتيجة الحفر مثلاً فإن عملية التضاغط ستنعكس مما سيؤدي إلى تصدعات وتشققات.
3- في حال تباين مساحات الأساسات المنفردة نتيجة تباين أحمال الأعمدة تبايناً كبيراً فإن الهبوطات تتناسب طرداً مع مساحة القاعدة مما يؤدي إلى فرق هبوط بين الأساسات الكبيرة والصغيرة.
4- الهبوط نتيجة عن الاتزان الناجم عن عوامل جيولوجية أو اصطناعية أو الاثنين معاً فمثلاً في التربة الطينية ذات الميول من المتوقع أن تتحرك الأساسات هابطة مع الميل ببطء إذا زادت درجة الميل عن 1/10 ويحدث هبوط أشد في حالة تساقط الجليد أو وجود جرف قريب. 
والخلاصة، يجب ألاّ تتجاوز قيم أقصى هبوط كلي للأساسات السطحية عن القيم التالية:
نوع الأساس نوع التربة أقصى هبوط (مم)
أساسات منفردة متماسكة (طينية) 70
أساسات منفردة متماسكة (رملية) 50
حصيرة متماسكة 150
حصيرة غير متماسكة 100
ولقد وجد علمياً أن هناك علاقة بين قيمة الهبوط الكلي والهبوط النسبي الذي قد يلحق أضراراً بالمنشأ وعموماً فإن عدم تجاوز قيم الهبوط الكلي المذكورة في الجدول السابق من شأنه أن يكونه كافياً لأن يتحمل المنشأ الهبوط النسبي بدون أضرار.
ويوضح الجدول التالي قيم الهبوطات النسبية المسموح بها بدلالة زاوية الدوران وذلك للمنشآت المختلفة (تعرف زاوية الدوران بأنها تساوي الهبوط النسبي بين عمودين مقسوماً على المسافة بين هذين العمودين).
الهبوط بدلالة 
ظل زاوية الدوران تصنيف الحــالـــة 
1 : 750 الحد المتوقع عند وجود مشاكل للأجهزة الحساسة للهبوط النسبي
1 : 600 الحد المتوقع عنده حدوث تشققات كبيرة في الإطارات من الخرسانة المسلحة الغير محددة سكونياً بدرجة كبيرة 
1 : 500 الحد المطلوب للمنشآت المراد خلوها من أية تشققات على وجه العموم.
1 : 300 الحد المتوقع عند حدوث تشققات بالجدران في المباني الهيكلية
1 : 250 الحد الذي يمكن عنده ملاحظة ميل المباني العالية بالعين المجردة
1 : 150 الحد المتوقع عند حدوث تشققات كبيرة في جدران المباني الهيكلية.
1 : 100 الحد المتوقع عند حدوث تشققات في الجدران الحاملة من الحجر (نسبة ارتفاع الجدار إلى الرطوبة أقل من 25%).
الحد الأدنى الذي يحدث عنده أضرار في هيكل المنشأ
9-4- التشققات الناتجة عن زيادة الحمولات الغير متوقعة أو نتيجة الحوادث أو الكوارث الطبيعية أو نتيجة تغيير استخدام وماهية المبنى:1- تعرض الأعضاء الخرسانية أثناء التنفيذ لأحمال أكبر كثيراً من تلك الواقعة عليها أثناء استعمال المبنى.
2- فك القوالب بعد ثلاثة أو أربعة أيام حيث مقاومة الخرسانة ضعيفة ثم وضع الكوفراج للسقف الذي يعلوه وصبه مباشرة.
3- تخزين مواد البناء والمعدات الثقيلة فوق العناصر الخرسانية وبالأخص البرندات (الأظفار).
4- تغيير مكان ومواضع الحمولات التي توضع على العنصر البيتوني عن تلك المبينة في المخططات مما يسبب حمولات زائدة عن المصمم عليها العنصر.
5- تعرض العناصر الخرسانية إلى صدمات فجائية غير متوقعة من أحمال متحركة.
6- استخدام المنشأ في غير الأغراض التي خصص لها، كأن يستخدم العقار السكني كمشفى أو مبنى إداري أو مخزن، مما يزيد إلى أكثر من ثلاثة أضعاف الحمل التصميمي الأصلي للمنشأ وهذا يؤدي إلى حدوث تشققات في عناصر المبنى المختلفة وإجهاد الخرسانة لقيم أكثر من المسموح بها.
7- إضافة طوابق على المنشأ غير محسوبة مما يؤدي إلى زيادة الحمولات على الأعمدة والأساسات.
8- عدم أخذ الكوارث الطبيعية الغير متوقعة مثل الزلازل والسيول والرياح والحرائق والتي تؤدي إلى تولد إجهادات إضافية لم تؤخذ بالاعتبار.
9-5- التشققات نتيجة لعدم وجود صيانة وحماية للمنشآت : 
1- غياب وجود حماية للمنشآت وخاصة الأساسات وبقية العناصر الإنشائية المكونة للمنشآت مثل العزل وعمل الاحتياطات اللازمة لمنع التشقق وحماية أسطح الخرسانة لبعض المنشآت الخاصة مثل المنشآت الساحلية ومصانع الكيماويات والصباغة والحلويات والورق والأنفاق والطرق وغير ذلك.
2- ضرورة حماية المنشأ ضد الحرائق الناتجة عن عيوب التوصيلات الكهربائية أو توصيلات الغاز أو المواد القابلة للاشتعال.
3- عدم توفير الصيانة اللازمة للمنشآت تؤدي على المدى الطويل إلى حدوث تدهور للخرسانة وبالتالي عيوب في العناصر الإنشائية المختلفة بالإضافة إلى عدم سلامة العناصر والوصلات وأعمال الصرف الصحي ومياه الأمطار ونظام التغذية بالمياه والتوصيلات الكهربائية والغاز وأجهزة التبريد والتسخين.

أنواع التشققات المختلفة 
1- تشققات نشطة (مستمرة الاتساع) 
أ‌- تشققات رأسية.
ب‌- تشققات مائلة. 
زيادة في العزوم.
زيادة في القص .
2- تشققات ساكنة. 
أ- رأسية أو مائلة زيادة مؤقتة في الأعمال 
ب- شقوق منفصلة ممتدة بكامل طول العضو الإنشائي انكماش محكوم الحركة أو درجات حرارة محكومة الحركة 
ج- تشقق عند تغيري القطاع تركيز موضعي للإجهادات 
د- تشقق عند تغيير في شكل المنشأ نقص في وصلات التحكم (فواصل الهبوط أو التمدد) 
هـ- تشقق عزوم منفصل في منطقة تكون العزوم فيها قليلة توقف قضبان في المنطقة يعمل بداية للتشقق
و- تشققات سطحية ساكنة معالجة ضعيفة – فقدان للمياه السطحية – رياح شديدة أثناء الصب.
3- تناثر وتفتت الخرسانة إجهادات ضغط زائدة أو هجوم كيمائي 
4- انتفاخ وتضخم في الخرسانة تفاعل البحص القلوي 
5- تغير لون الخرسانة هجوم كيميائي، نمو طحالب، صدأ حديد التسليح.
6- تآكل الخرسانة كشط أو احتكاك الخرسانة، هجوم كيميائي، خرسانة ذات نفاذية عالية.
7- حدوث إجهاد وخضوع للحديد تحميل زائد 
8- إنقصاف حديد التسليخ حدوث كسر هش أو وصول إجهادات الكلال للحديد 
9- حدوث ترخيم زائد للعضو الإنشائي تحركات الأساسات، تحميل زائد، وضع خاطئ لحديد التسليح.
10- صدأ حديد التسليح نفاذية الغطاء الخرساني، توصيل تيار كهربائي ضال

تقويم التشققات 
تشمل عملية تقويم التشققات على تحديد مواقعها ومداها وأسباب حدوثها ومدى الاحتياج للترميم وقد يضطر المهندس الذي يقوم بهذه العملية إلى إعادة دراسة المخططات ودراسة المذكرة الحسابية وإعادة الحسابات ومراجعة المواصفات ومطابقة ذلك كله مع ما تم تنفيذه وتدوين أي تعارض أو تباين ومن ثم إعطاء الرأي حول الترميم أو الإصلاح أو الحلول المناسبة.
وتتم عملية تقويم التشققات وفق منهجية واضحة حسب الخطوات التالية:
1- الفحص البصري: 
يستعان بمخطط وضع راهن للمبنى يحتوي على شبكة المحاور التي صمم على أساسها وذلك لتحديد المواقع المختلفة والمريضة بدقة ومن ثم تدوين الملاحظات التالية عليه:
- أماكن الشقوق وأبعادها.
- المواقع التي تصدعت فيها حواف الخرسانة.
- أماكن التسليح الظاهر وبقع الصدأ إن وجدت.
- مدى تآكل الخرسانة.
- أية أضرار أخرى ظاهرة في سطح الخرسانة مثل التعشيش ومن المفضل أن ترفق هذه الملاحظات بصور فوتوغرافية توضح حالة المنشأ وشكل الشقوق وتساعد في مناقشة ودراسة الحالة مع عدد من الخبراء في مختلف الاختصاصات.
2- الفحص الآلي : 
يمكن الطرق على السطح بواسطة مطرقة لاكتشاف التشققات القريبة من السطح بدلالة التطبيل الذي يدل على وجود نقاط ضعف أو تشققات تحت السطح.
كما يمكن استخدام ميكروسكوب صغير مزود بتدرج على عدسته الخارجية لقياس عرض الشقوق.
كما يمكن استخدام أجهزة الموجات فوق الصوتية التي تعطي قيمة مكتوبة لزمن عبور الموجات وبالتالي تدل على وجود شقوق أو تجاويف.
وهناك أجهزة أشعة سينية وأشعة جاما لاستكشاف مستويات التشقق الموازية لاتجاه الأشعة.
وهناك أجهزة لتحديد أماكن التسليح وعمقها وقياس القضيب.
3- الفحص المخبري: 
- الاختبارات الغير متلفة للبيتون.
- الاختبارات المتلفة.
ويعتبر من أهم الأعمال أخذ الجزرات (القلوب) الخرسانية التي تستخرج من أماكن مختارة في المنشأ وذلك لبيان نوعية الخرسانة بواسطة اختبارات الضغط واختبار التفاعلات الكيماوية أو أية مواد ضارة.
4- مراجعة المخططات : 
يجب مراجعة التصميم الإنشائي ومخططات التسليح التنفيذية حتى يمكن التعرف على أماكن الضعف أو المراحل التي يمكن أن تظهر عندها التشققات ويمكن مراجعة الحسابات للتأكد من أن التسليح كافياً لتحمل ما تعرض له المنشأ من أحمال.
5- الحكم على الشقوق : 
من الصعب وضع حدود حول عرض الشقوق المقبولة، لذلك فإن الكودات العالمية وضعت بعض الحدود التي تؤخذ بالاعتبار عند تصميم المنشآت الخرسانية: 
- الكود البريطاني: يقبل حداً يصل إلى 0.2 مم.
- الكود الأمريكي: يقبل شقوقاً حتى 0.41مم في الأجزاء الداخلية، و0.33 في الأجزاء الخارجية.
- الكود السوري: 0.3 مم.
طرق إصلاح التشققات : 
يتم تحديد أسلوب الإصلاح على التقويم الدقيق عن أسباب التشققات ومداها ويتم اختيار الأسلوب المناسب تبعاً لما نرغب تحقيقه من الأهداف التالية:
1- استعادة المقاومة أو زيادتها.
2- استعادة الصلابة أو زيادتها.
3- تحسين الأداء الوظيفي للمبنى.
4- إكساب الخرسانة خاصية عدم النفاذية للماء.
5- تحسين المظهر الخارجي لسطح الخرسانة.
6- تحسين متانة الخرسانة.
7- منع وصول المواد التي تساعد على تآكل الخرسانة أو صدأ حديد التسليح.

خطوات الإصلاح والعلاج : 
1- التشخيص السليم.
2- تحديد تقويم مدى جدوى الإصلاح والعلاج من عدمه.
3- وضع خطة العمل وتحديد أولويات العمل.
4- اختيار وتحديد طريقة الإصلاح.
5- إعداد العضو الإنشائي للإصلاح.
6- التنفيذ السليم لطريقة الإصلاح ويجب مراعاة الأمور التالية:
‌أ- ضرورة إزالة الأسباب الأصلية التي أدت إلى ظهور العيوب أو التدهور.
‌ب- ضرورة إعداد العضو المراد إصلاحه إعداداً جيداً لتلقي الإصلاح.
‌ج- ضرورة اختيار الطريقة السليمة للإصلاح وكذلك المواد التي تستخدم في الإصلاح.
‌د- ضرورة التطبيق الجيد لطريقة الإصلاح مصحوبة بمعالجة المنطقة أو العضو المستصلح لمدة كافية.

الانهيارات بسبب أخطاء إنشائية

بسم الله الرحمن الرحيم


يقول جيمس امرهين المدير التنفيذي لمعهد البناء في الولايات المتحدة الأمريكية : ( إن الهندسة الإنشائية هي ذلك الفن في نمذجة المواد التي لا نفهمها تماما إلى إشكال لا نستطيع تحليلها بدقة لتقاوم حمولات لا نستطيع توقعها بشكل تام و كل هذا في مجتمع غالبيته الساحقة لا تدرك محدودية المعرفة التي نحيط بها).
الانهيارات بسبب أخطاء إنشائية

أخطاء في التصميم

وتتمثل في :

* عدم الالتزام بمتطلبات القوانين الهندسية .
* سوء تقدير الحمولات .
* أخطاء في الحسابات .

أخطاء في التنفيذ

تتمثل في :

* عدم الالتزام بشروط التصميم .
* سوء اختيار المواد.
* التكنولوجية القاصرة في التنفيذ.

تظهر هذه الأخطاء خاصة في الزلازل القوية ومن بينها:

الأساسات

تعتبر الأساسات هي العنصر الأهم في أي منشاة و هذا يتطلب إعطاؤها أهمية خاصة. فالعديد من الانهيارات ناتجة عن مشاكل في الأساسات مثل:

* قلة عمق التأسيس ←تزيد من احتمال انقلاب المنشاة أو انزلاقها.
* قلة الروابط بين القواعد←يزيد من خطر هبوط التربة أو تمييعها

و لهذا يجب تفادي التأسيس على أنماط مختلفة من التربة أو مستويات مختلفة . كما أن أكثر طرق التأسيس لمقاومة الزلازل هي الحصيرة العامة reirad وإذا كانت مسندة إلى أوتاد يكون احتمال الانقلاب نادرا.

التسليح الطولي

تزداد مشاكل التسليح الطولي عند تطبيق حمولات أنية متناوبة –هزات زلزالية – فتحدث الانهيارات بسبب قلة التسليح الطولي خاصة في مناطق العزم السالب . كذلك زيادة التسليح الطولي بشكل عشوائي يؤدي إلى إضعاف المقطع الخراساني ديناميكيا و خاصة عند استعماله بأقطار كبيرة .و ذلك لاختلاف الاهتزاز بين الخرسانة و الفولاذ مما يؤدي إلى انفصال بينهم .ا انفصال الفولاذ قلة التسليح الطولي

* زيادة عشوائية في التسليح الطولي

التسليح العرضي

عادة لا يتم إعطاء التسليح العرضي أهمية كبيرة فلا توجد قوانين حسابية خاصة به .إن كثرة الانهيارات الناتجة عن انعدام التسليح العرضي جعلت بعض القوانين الأمريكية ،التايوانية ،التركية ... تعتمد ما يسمى بالاسوارة الزلزالية

العقد

هي مناطق التقاء الجوائز بالأعمدة .من الملاحظ أن عدم كفاية التسليح العرضي في هذه المناطق هو أكثر الأسباب التي أدت إلى انهيار المباني نمط التسليح في مناطق العقد

الأعمدة المعلقة

الخطأ المرتكب في هذه الحالة هو أن الطابق الأخير ليس في أصل البناء أي هو طابق مضاف و لتنفيذ أعمدته يتم غرس قضبان الأعمدة الجديدة ضمن الأعمدة القديمة و عند تعرض المبنى لقوة زلزالية كبيرة يحدث انفصال بين الأعمدة الجديدة و القديمة فتنهار الطوابق السفلية و يسقط الطابق المضاف كاملا مع بقاء أعمدة الطابق ما قبل الأخير محمولة من طرف بلاطة الطابق الأخير كما تفيد الدراسات أن خرسانة الطابق المضاف أفضل من خرسانة الطوابق القديمة .

انقلاب المباني

يعتبر انقلاب المباني واحد من أنماط الانهيار العامة و المميزة للقوى الأفقية و لانقلاب المباني أسباب عديدة منها :

* قصور الدراسة التصميمية عن دراسة احتمال الانقلاب .
* حصول تمييع لتربة الأساسات

ناتج عن حمولة أفقية زلزالية يستحيل لعزم . *عزم انقلاب يقاومها محسوب تحت تأثير قوة شاقولية فقط. لاستقرار تنقلب بعض المباني دون حدوث أي أضرار بالغة مما يؤدي إلى إعادة تأهيل.

الجملة الانشائية

يتعلق الأمر بالتصميم المعماري للمنشأ لمقاومة حمولات تقليدية دون الحمولات الفجائية ويشمل أبعاد الأعمدة والجوائز والواصلات بينها . من المعروف أن هناك حدود دنيا لأبعاد الأعمدة و التسرع باعتماد أبعاد اقل من هذه الحدود الدنيا لا يحقق متطلبات الأحمال الأفقية .ومن هذه الأخطاء

* حساب حمولة الأعمدة بطريقة المساحات وهي طريقة تقريبية دون اعتبار رد الفعل الناتج عن عزم الانحناء علي الركائز.
* عدم احترام إبعاد الأعمدة
* عدم مراعاة أطوال وامتداد قضبان التسليح على الجوائز و الأعمدة .
* كبر مقاطع الجوائز مقارنة بمقاطع الأعمدة
* جميع أعمدة المبنى في اتجاه واحد



ليس التصميم الإنشائي القاصر هو المشكلة الوحيدة التي تتسبب بانهيار المنشات وإنما يجب الانتباه إلى نوعية التنفيذ ومدى الالتزام بتطبيق التصميم في ارض الواقع ولتفادي هذه الأخطاء يجب :

* التنسيق بين المهندس المعماري والمهندس المدني .
* يجب على مكتب المراقبة مراجعة المخططات قبل الشروع في الانجاز .
* مراقبة عملية البناء خلال مدة الانجاز.

أنواع الموادالعازلة وكيفية أستخدامها

‘‘أنواع الموادالعازلة وكيفية أستخدامها‘‘
العوازل : 
هي مواد صنعت خصيصا حتى تحافظ على المباني لاطول عمر ممكن لها , أما أنواعها فهي تبعأ للمكان الذي نستخدم فيه العوازل أو السبب الذي نستخدمها من اجله . 

أنواع العزل : 
أولا : العزل الحراري .
ثانيأ : العزل الصوتي . 
ثالثأ : العزل الصوتي والحراري .
رابعأ: العزل الرطوبي .


أولا: العزل الحراري : 
وهي تلك المواد أو تشكيلة المواد التي إذا استخدمت بطريقة مناسبة يمكن أن تمنع أو تقلل انتقال الحرارة بوسائل الانتقال الحراري المختلفة ( التوصيل – الحمل- الاشعاع ) من الخارج إلى الداخل أو العكس سواء كانت درجة الحرارة مرتفعة أو منخفضة. و فائدة العزل الحراري انه يوفر المبنى المعزول من الحرارة الطاقة المبذولة لتسخينه أو لتبريده . كذلك يجعل درجة الحرارة الداخلية للمبنى متساوية وغير متقلبة ولجعل عملية العزل الحراري للمبنى اقتصادية يجب اختيار العوامل الآتية بدقة :
تكاليف المواد العازلة .
تكاليف العمالة التي ستقوم بتركيبه .
كمية توفير الطاقة للمبنى نتيجة تأثير العازل بعد تركيبه .
تكاليف صيانة المواد العازلة . 

1. التوصيل الحراري Conduction ويتم بانتقال الحرارة خلال المادة من الوجه البارد بمعدل ثابت ولايمكن أن ترتفع درجة الحرارة للوجه البارد أكثر من المصدر الأساسي له والقدرة على التوصيل ترجع سرعة انتقال الحرارة خلال المادة فمثلا انتقال الحرارة خلال الحديد عالية إذا ماقورنت بمادة عازلة مثل الصوف المعدني أو الفلين .

2.الحمل الحراري Convection ويتم بانتقال الحرارة بواسطة الهواء المحيط بها حيث تنتقل جزيئات الغاز أو السائل من المناطق الساخنة إلى الناطق الباردة حاملة الطاقة الحرارية معها وبتصادم الجزيئات الباردة والساخنة تنتشر الحرارة خلال المادة في الحمل الطبيعيفالجزيئات الساخنة تقل كثافتها تصعد إلى أعلى ويحل محلها الجزيئات الباردة التي كثافتها أكبر وبذلك تتكون تيارات الحمل المعروفة بجانب ذلك يوجد الحمل القسري الذي يتأثر بحركة الهواء داخل المبنى.

3.الاشعاع الحراري Radiation ويتم بانتقال الحرارة بالاشعاع الذي لا يتطلب وسيط أو حركة هواء وهي الطريقة التي تنتقل بها حرارة الشمس إلى الأرض فنجد أن الحرارة تنتقل من المصدر الساخن إلى المكان الأقل برودة كما نلاحظ أن الأسطح العاكسة كمثل الرقائق المعدنية تعكس الاشعاعات الحرارية وتقلل من امتصاص الحرارة للأسطح المشيدة عليها, وللحد من انتقال هذه الحرارة يجب عزل المباني بغرض حمايتها من الحرارة النفقودة في فصل الشتاء والحرارة المكتسبة في فصل الصيف فنجد أن حوالي 25% من الحرارة المكتسبة تتسرب خلال الشقوق وفتحات الشبابيك وأبواب المبنى وأن حوالي 25% أخرى تتسرب خلال الزجاج أما باقي الحرارة وهي حوالي 50% فتتسرب مباشرة خلال أسقف وحوائط المبنى, ويتم انتقال الحرارة أساسا في حوائط المبنى بطريقة التوصيل الحراري وتعتمد كمية انتقال الحرارة على فرق درجات الحرارة بين سطحي الحائط وسمك الحائط ومساحة الأسطح المعرضة للحرارة والفترة الزمنية للمسار الحراري ومعدل التوصيل الحراري للمادة.

العوامل المؤثرة في مسار الحرارة : 
يعتبر الحمل الحراري الاشعاعي من أهم الطرق في نقل الحرارة خلال مواد البناء ففي داخل المباني نجد كمية هائلة من الهواء المتحرك يتم نقل حرارته خلال مواد البناء بطريقة الحمل الحراري بالإضافة إلى الأسطح المصقولة والظاهرة لحوائط مواد البناء تعكس الحرارة الآتية من أشعة الشمس بطريقة الإشعاع الحراري وعلى ذلك نجد أن العوامل التالية تلعب دورا هاما في مسار الحرارة من خارج المبنى إلى داخله:

1.قدرة توصيل مادة الأسطح المعرضة للخارج للحرارة مثل الحوائط والأسقف والأرضيات .....إلخ .
2.فرق درجات الحرارة المعرض لها وجهي الحائط الخارجي والداخلي
3.مساحة الحوائط الخارجية للمبنى .
4.المساحة الكلية المغطاة بالأبواب والشبابيك وكمية الحرارة التي تهرب من خلال شقوق الأبواب والشبابيك بالمقارنة إلى الحائط العادي .
5.معدل حركة الهواء داخل المكان المغلق في المبنى .
6.معدل التغيير الهوائي داخل المبنى .

يمكن تقسيم المواد العازلة بصورة أساسية كما يلي :
مواد عازلة غير عضوية : تتركب من ألياف أو خلايا كالزجاج والاسبستوس والصوف الصخري وسيلكات الكاليسوم والبيرلايت والفيرميكيولايت .

مواد عازلة عضوية ليفية : مثل القطن وأصواف الحيوانات والقصب أو خلوية مثل الفلين والمطاط الرغوي أو البولي ستايرين أو البولي يورثين .

مواد عازلة معدنية : كرقائق الألمنيوم والقصدير العاكسة.

أما الأشكال التي توجد عليها المواد العازلة فهي كما يلي :
مواد عازلة سائبة : وتكون عادة في صورة حبيبات أو مسحوق تصب عادة بين الحوائط أو في أي فراغ مغلق كما يمكن أن تخلط مع بعض المواد الأخرى وهي تستخدم بصورة خاصة في ملء الفراغات غير المنتظمة .

مواد عازلة مرنة الشكل: وهي تختلف في درجة مرونتها وقابليتها للثني أو الضغط وتوجد عادة على شكل قطع أو لفات وتثبت عادة بمسامير ونحوه كالصوف الزجاجي والصخري ورقائق الألمنيوم ونحوها .

مواد صلبة : وتوجد على شكل ألواح بأبعاد وسماكات محدودة بالبولي يورثين والبولي ستايرين .

مواد عازلة سائلة: تصب أو ترش في أو على المكان المطلوب لتكوين طبقة عازلة وهذه مثل البولي يورثين الرغوي .

خصائص مواد العزل الحراري :
بالنظر الى متطلبات التصميم فإن اختيار مادة عازلة معينة يستلزم بالاضافة الى معرفة الخاصية الحرارية ، معرفة الخصائص الثانوية الأخرى للمادة كامتصاص الماء والاحتراق والصلابة ..الخ.

الخصائص الحرارية :
والمقصود منها قدرة المادة على العزل الحراري وعادة ما تقاس بمعامل التوصيل الحراري فكلما قل معامل التوصيل دل ذلك على زيادة مقاومة المادة للانتقال الحراري . فالمقاومة الحرارية تتناسب تناسبا عكسيا مع معامل التوصيل الحراري خلال المادة العازلة يتم عادة بواسطة جميع وسائل الانتقال المختلفة (التوصيل والحمل والاشعاع) .
أما المواد العاكسة فهي لقدرتها العالية على رد الاشعاعات والموجات الحرارية تعتبر مواد فعالة في العزل الحراري بشرط أن تقابل فراغا هوائيا وتزيد قدرة هذه المواد على العزل بزيادة لمعانها وصقالتها . 
وغالبا ما تكون المادة العازلة متكاملة مع الجدران والأسقف ولذا فلمعرفة المقاومة الكلية للانتقال الحراري لابد من جمع المقاومات المختلفة لطبقات الحائط أو السقف بما فيها مقاومة الطبقة الهوائية الملاصقة للأسطح الداخلية أو الخارجية .
وجمع هذه المقاومات يشابه تماما جمع المقاومات الكهربائية ، فهي إما أن تكون على التوازي أو التسلسل ويعتمد هذا على تركيبة المواد في الحائط أو في السقف. وإضافة الى ما ذكر من خصائص حرارية فإن هناك خصائص أخرى كالحرارة النوعية والسعة الحرارية ومعامل التمدد والانتشار والتي لابد من معرفتها لكل مادة عازلة .

الخصائص الميكانيكية :
بعض المواد العازلة تتميز بمتانة وقدرة على التحميل . ولهذا فيمكن أحيانا استخدامها للمساهمة في دعم وتحميل المبنى وذلك إضافة الى هدفها الأساسي وهو العزل الحراري . ولهذا ينظر الى قوة تحمل الضغط والشد والقص ..الخ.

الامتصاص : 
وجود الماء بصورة رطبة أو سائلة أو صلبة في المادة العازلة يقلل من قيمة العزل الحراري للمادة أو يقلل المقاومة الحرارية ، كما أنه قد يساهم في إتلاف المادة بصورة سريعة ,وتأثير الرطوبة على المادة يعتمد على خصائص المادة من حيث قدرتها على الامتصاص والنفاذ ، كما يعتمد على الأجواء المناخية المحيطة بها كدرجة الحرارة ونسبة الرطوبة ..الخ. اما الخصائص التي يقاس بها مدى تأثير المادة بالرطوبة فهي الامتصاص والنفاذية .

الأمان والصحة :
لبعض المواد العازلة خصائص معينة منها ماقد يعرض الإنسان للخطر سواء وقت التخزين أو أثناء النقل أو التركيب أو خلال فترة الاستعمال فقد تتسبب في إحداث عاهات في جسم الإنسان ، دائمة أو مؤقتة ، كالجروح والبثور والتسمم والالتهابات الرئوية أو الحساسية في الجلد والعينين مما يستوجب أهمية معرفة التركيب الكيميائي للمادة العازلة . كذلك صفاتها الفيزيائية الأخرى من حيث قابليتها للاحتراق والتسامي . 

الصوت :
بعض المواد العازلة للحرارة قد تستخدم لتحقيق بعض المتطلبات الصوتية كامتصاص الصوت وتشتيته وامتصاص الاهتزازات لذا فإن معرفة الخصائص المرتبطة بهذا الجانب قد يفي بتحقيق هدفين بوسيلة واحدة .
إضافة الى ما سبق من خصائص فإن هناك خصائص قد تكون ضرورية عند اختيار المادة العازلة المناسبة كمعرفة الكثافة والقدرة على مقاومة الانكماش وامكانية الاستعمال وانتظام الأبعاد ومقاومة التفاعلات الكيميائية والمقاسات والسماكات المتوفرة..الخ . إضافة لكل ما سبق يلعب العامل الاقتصادي أخيرا دورا هاما في اتخاذ القرار ، في سعر المادة العازلة له اثر كبير عند الاختيار . 

ما هو القدر المناسب من المادة العازلة :
يتم عادة اختيار نوعية المادة العازلة بالموازنة بين تكلفتها الاقتصادية ومدى تحقيقها للمتطلبات الرئيسية والثانوية ولكن هذا الاختيار لا يغني عن السعي الى تحديد السماكة المناسبة من المادة المختارة . يمكن تقسيم المباني من حيث نوعية وطريقة الاكتساب الحراري الرئيسي الى نوعين : 
1.مباني معظم اكتسابها للحرارة يأتي من خلال القشرة أو الغلاف الخارجي للمبنى بمعنى أن متطلبات التبريد والتدفئة تتناسب بصورة تقريبية مع الفرق بين درجة الحرارة الداخلية والخارجية . وتقع المساكن والمخازن عادة في هذا القسم نظرا لأن الحرارة المكتسبة من الخارج تفوق بكثير الحرارة الناتجة عن النشاطات المختلفة داخلها .ففي هذه المباني فإن زيادة العزل الحراري في الغلاف الخارجي للمبنى سيؤدي بالضرورة الى تقليل مقدار الحرارة المكتسبة أو المفقودة وهذا بالتالي يؤدي الى تقليل الطاقة اللازمة لإزالة ما يكتسب أو تعويض ما يفقد . ولتحديد السمك الأمثل للمادة العازلة في المباني من هذا النوع فإن الضابط الأساسي لهذا التحديد هو مقدار التكلفة الكلية وهي تساوي مجموع تكلفة المادة العازلة وتكلفة الطاقة اللازمة لتكييف المبنى .

2.مباني اكتسابها الرئيسي للحرارة يأتي من داخلها وهذه المباني يكون الاكتساب الرئيسي للحرارة فيها نتيجة للنشاطات المقامة داخلها كالمصانع أو نتيجة لضخامة عدد المستخدمين أو للحرارة الناتجة عن الاضاءة الصناعية كالمكاتب ونحوها . ففي مثل هذه المباني ولأن معظم الاكتساب لا يتأثر بشكل أساسي بالظروف الجوية الخارجية فإن زيادة سمك الطبقة العازلة لا يؤدي بالضرورة إلى تقليل تكلفة الطاقة بل قد يؤدي إلى زيادتها فضلا عن زيادة التكلفة الكلية . فزيادة سمك الطبقة العازلة يؤدي إلى احتباس الحرارة المكتسبة في الداخل من تراكمها فتزيد أحمال التبريد بصورة واضحة . لذا فالمباني من هذا النوع تحتاج إلى دراسة مستفيضة بواسطة الحاسب الآلي لتحديد سلوك المبنى الحراري على مدار العام باستخدام سماكات مختلفة من المادة العازلة ومن ثم الوصول الى السمك الأمثل.

مواد العزل الحراري: 
1.الألياف النباتية: 
تعمل من الخشب وتعالج لكي تكون مقاومة للحرائق وامتصاص الماء. 
2. الفلين: 
ويعمل من لحاء الشجر ويستخدم على شكل ألواح في الحوائط التي تحتاج إلى عزل وقد تستخدم على شكل مسحوق. 
3. الفلين الصخري: 
يتكون من صوف صخري ممزوج مع قطع صغيرة من الخشب مع مادة لاصقة إسفلتية غالبا، وتستخدم هذه المادة لعزل مخازن التبريد والمنشآت والبيوت الرخيصة. 
4. المواد العاكسة العازلة: 
حيث يتم فيها العزل عن طريق عكس الحرارة عن الوجه العاكس وليس بطريقة التوصيل الحراري المعتادة، ومن هذه العواكس: الألمنيوم وصفائح الفولاذ والورق العاكس والدهان العاكس. وتستخدم هذه المواد على السقف والجدران الخارجية العمودية. 
5. ألواح البولي كاربونيت المموجة ( The poly carbonate sheets): 
تصنع من مادة البولي كاربونيت الخفيفة الوزن، وتشكل على هيئة ألواح من طبقتين أو ثلاث طبقات حتى تصلح لأغراض العزل الحراري وتصبح قادرة على تحمل الصدمات، وتستخدم غالبا في الأسقف. 
6.إستروفويل" أغشية عازلة جديدة (Reflective insulating material):
تتكون من طبقتين من رقائق الألمنيوم العاكسة بينها فقاعات هوائية مصنوعة من مادة البولي إيثيلين، وتقوم هذه المادة بعكس أشعة الشمس عن المبنى في الصيف وتحتفظ بالحرارة داخله في فصل الشتاء، وتساعدها في ذلك الفقاعات الهوائية التي تمنع انتقال الحرارة خلال الحوائط، ومن فوائدها أيضا أنها عازل جيد ضد تسرب الماء والهواء مما يؤدي إلى المحافظة على الطاقة داخل المنزل. 
7. ألواح مؤخرة للحرائق (Fire retardant sheets): 
هي ألواح تتميز بإطالة زمن مقاومة الحريق للمنتج الذي يصنع منها، وهي متوفرة بجميع المقاسات التي تسمح بتشكيل قطع الأثاث الداخلي و القواطع الداخلية والحوائط. 

ثانيا: العزل الصوتي :
يتم عزل المباني لمنع إنتقال الصوت من مكان إلى آخر وذلك بسبب سهولة إنتقال الصوت عبر الأجزاء الخرسانيه.

الصوت: 
هو أحد صور الطاقة وينتقل الصوت من مكان لآخر بواسطة أمواج ميكانيكية وأمواج تضاغط تحدث ذبذبات في الهواء أو المواد البنائية وتقاس بالميكروبار ويمكن التمييز بين صوت حديث شخصين وصوت موسيقى مثلا بواسطة الأذن الآدمية أو الأجهزة الصوتية وعلم الصوت Acoustics يصف مصدر الصوت وانتقاله والاحساس به ولكي ندرك مدى قدرة الانسان على الشعور بحاسة السمع في البيئة المحيطة به يجب دراسة جهازه السمعي لتقدير ذلك , ونظرا لأن الأصوات المستمرة والمتقطعة المحيطة بالانسان تمثل طاقة خاصة قد تؤدي إلى توتره العصبي وتؤثر على طريقة سلوكياته وتصرفاته لذلك كان علينا دراسة البيئة المحيطة بالانسان سواء خارج المبنى أو داخله دراسة معمارية وتنفيذية للتحكم في تهيئة مستوى الأصوات المناسبة لمعيشته وعمله وهذا لا يتم إلا بالتحكم في شكل الفراغ الداخلي للمبنى سواء في التصميم المعماري أو التنفيذي بجانب حسن اختيار أنسب المواد العازلة للصوت ووضعها في مكانها الصحيح مع ضبط تشطيبها . كل ذلك يساعد على الحد من الأصوات الخارجية الغير مرغوب وصولها للانسان بالاضافة الى التحكم في درجة مستوى الصوت الداخلي المناسب .

بعض مصطلحات الصوت :
سرعة الصوت :
ينتقل الصوت خلال الهواء العادي في درجة حرارة 20 م بسرعة 340 مترا في الثانية على شكل موجات صوتية 

تردد الصوت Frequency :
هو عدد الموجات الصوتية في الثانية الواحدة ويقاس بوحدة هيرتز 

شدة الصوتIntensity :
هو مسار الطاقة الصوتية في وحدة زمنية خلال وحدة مساحية ويقاس بوحدة
وات / سم2 فتردد الصوت يحدد نوعية الصوت أما شدة الصوت فتحدد كمية الصوت وعموما فإن مدى السمع عند الانسان يتراوح بين 20 – 20000 هيرتز.

امتصاص الصوت :
عندما تقع موجة الصوت على سطح ما فإن كل طاقة الصوت تتوزع إلى ثلاثة اتجاهات رئيسية . جزء منها يدخل في السطح والجزء الثاني يمتص بالاحتكاك مع السطح والجزء الأخير ينعكس من السطح ويعتمد وجود صدى صوت على كمية فقد موجة الطاقة الصوتية نتيجة احتكاك الصوت بالسطح وهذا يمثل أهمية كبرى للصوت . 

معامل امتصاص الصوت:
هو النسبة بين الطاقة التي امتصت بواسطة السطح إلى الطاقة الكلية الواقعة على هذا السطح

إنتقال الصوت:
ينتقل الصوت على شكل موجات صوتيه خلال الأجسام الصلبة وكذلك ينتقل عبر الوسط الغازي حيث نستطيع تمييز اصوات النداء والضوضاء والموسيقى المنتقلة في الجو المحيط

الجسر الصوتي (الوتر الصوتي ) : 
مصطلح يطلق على الاماكن التي تسمح بانتقال الصوت خلالها نتيجة تلف العازل اثناء التنفيذ او عدم تغطيتها اساسا وهو من عيوب تنفيذ اعمال العزل 

الصوت الناتج عن وقع الأقدام :
يعتبر الصوت الناتج عن قرع الأقدام أكبر مثال على وجود هذه المشكله لذا وجب عزل المبنى ضد هذه الظاهر والتى تمثل انتقال صوت قرع الاقدام من الأدوار العليا إلى الأدوار السفلى في المبنى مسببة ازعاج.

معامل الضوضاء : 
وهي طريقة لتحديد مستوى شدة الصوت الذي لا يزيد عن البيئة الخاصة به . ودائما يحدد في عقود مواصفات المباني للتعبير عن أعلى مستوى للصوت في الفراغ ومنحنى معامل الضوضاء مصمم لإعطاء مستويات عالية للصوت على ترددات منخفضة آخذه في الاعتبار مميزات الأذن الآدمية لتخفيض الحساسية عند سماع الترددات المنخفضة لمستوى الضوضاء المسموحة بها للنغمات الصوتية بين 1200 هيرتز إلى 2400 هيرتز .

معامل تخفيض الضوضاء :
وهو المتوسط الحسابي لامتصاص الصوت في مادة المباني على أربعة نغمات مترددة تبدأ من 250 إلى 2000 هيرتز ويحدد تخفيض الضوضاء بمجموع سمك المواد وطريقة تركيبها . كذلك يعتمد امتصاص الصوت على سمك المادة ونوع العازل الصوتي فنجد أن كبر المساحة المعرضة للصوت تؤدي إلى تصعيد الصوت في مسام المادة ويؤدي ذلك إلى زيادة معامل تخفيض الضوضاء أما اختيار مواد السقف العازل للصوت فيتحدد من عدة عوامل منها تخفيض الضوضاء لمادة السقف.

رتبة انتقال الصوت :
وهي مقياس لانتقال الصوت خلال حائط ويعبر عنه بقيمة واحدة محدودة لكل مادة بحيث يقيس الاستجابة في المدى من 100 إلى 5000 هيرتز وفي هذا المدى أيضا يقارن الفقد الحقيقي بالنسبة للفقد العياري حيث الفقد الحقيقي لا ينبغي أن يقل عن 8 ديسيبل عن الفقد المعياري عند بعض الترددات الصوتية وعلى ذلك فالمقياس يستعمل خاصة لقياس كفاءة عزل المادة للصوت عند تردد صوتي مقداره 500 هرتز في مجال فقد انتقال الصوت للحائط أو الأرضية المراد قياسهم والتي تقدر عادة في حدود مجال أصوات المناقشات بين الناس.

الأساليب المعمارية في التحكم في مستوى الصوت :
1.أساليب تخطيطية بتحديد وضع مصادر الصوت مثل الشوارع وما في حكمها وربطها بالمباني والبيئة.
2.أساليب تصميمية لأشكال الفراغ الداخلي بالمباني.
3.أساليب تنفيذية باختيار مواد عازلة للصوت .

المواد المستخدمة في العزل الصوتي:
يستخدم في العزل الصوتي مواد انشائية خاصه مثل:
1.ألواح البوليسترين المنبثق
2.ألواح الفلين
3.ألواح من الجبس
4.مونه رغويه خفيفه (الفوم)


طرق العزل الصحيح:
لضمان عدم انتقال الصوت ونفاذه خلال المواد العازله يجب مراعاة عدة امور رئيسية خلال تنفيذ اعمال العازل خصوصا عند استخدام الواح البوليسترين المنبثق ومن اهمها:
1. استخدام مواد عزل معتمدة ومضمونة .
2.تغطية كافة السطح المراد عزله بالماده العازلة .
3.عدم وجود فواصل كبيرة بين قطع المادة العازلة .
4.تسكير الفواصل بين القطع باستخدام شريط لاصق خاص .
5. تغطية العازل باستخدام شرائح خاصة تعمل على حمايته .

الاتصال بين الارضية والحائط:
من الامور التي يجب ان تراعى أثناء تنفيذ اعمال العزل حيث لا يسمح بوجود اتصال مباشر بين الحائط المبني من الطابوق او المصبوب خرسانيا والارضية المبلطة حيث يجب الفصل بينها باستخدام نعلة راسية من العازل (وزره) تقوم بصد الصوت المنتقل افقيا عبر البلاط والذي بدوره ينتقل راسيا خلال الحائط وصولا الى الادوار السفلى .

أشكال العزل الصوتي في المباني: 
منع انتقال الصوت في القواطع والجدران والسقوف من الخارج. 
2.منع انتقال اهتزاز وأصوات المكائن. 
3.طرق امتصاص الصوت والضوضاء في الداخل. 


مواد العزل الصوتي: 

1.وحدات جدارية عازلة للصوت (Acoustique tiles): 
بلاطات ممتصة للصوت، تتكون من وجهين غالبا وتكون محببة من الكوارتز الملون والملصق بالراتنج، وتتميز بقدرتها على التحمل وسهولة التنظيف ولا يمكن تشويهها بالرسم عليها. 
2. ألواح الصوف الزجاجي (Panels of glass wool): 
يتكون اللوح من وجه من الصوف الزجاجي والوجه الآخر من ورق الألمنيوم المثقب الذي يقوم بامتصاص الصوت، ويمكن تركيبها في الحوائط و الأرضيات والأسقف، وتستخدم في المباني التجارية والصناعية الجديدة أو التي تحتاج إلى تجديد. 
3.ألواح من رغوة البلاستيك مثقبة أو محببة الوجه. 
4.ألواح من مواد ورقية مضغوطة ومثقبة الوجه. 
5.ألواح مربعة أو مستطيلة من الجبس مع ألياف في الوجه والداخل. 
6. ألواح من ألياف المعادن مع مادة الإسمنت البورتلندي الأسود. 

ثالثا: العزل الصوتي والحراري: 
هناك بعض المواد التي يمكن استخدامها كعوازل للصوت والحرارة معا، منها: 
1.ألواح الصوف الزجاجي: 
مصنوعة من الصوف الزجاجي المغطى بطبقة رفيعة من الزجاج تكسبها الصلابة، كما أن هذه الألواح لديها القدرة على مقاومة الرطوبة وسوء الاستخدام إذ أنها تخلو من المواد القابلة للصدأ، ويمكن استخدامها في مختلف أنواع المباني لعزل الجدران والأسقف. 
2.ألواح العزل الحراري والصوتي (Thermal and acoustic sheets) : 
تستخدم هذه الألواح دون الحاجة إلى تغطيتها من الداخل وتصلح خاصة لأسقف المصانع حيث تناسب جميع الأبعاد الكبيرة للإنشاء، وهذه الألواح تقاوم الغبار والرطوبة والتآكل حيث تغلفها طبقة حماية بلاستيكية ذات عمر طويل، وهذه الألواح نقية من المواد المشجعة على الصدأ. 
3. البيرلايت: 
وهو عبارة عن صخور بركانية بيضاء اللون، ويعتبر البيرلايت من أفضل العوازل المستخدمة لصناعة وتخزين الغازات السائلة تحت درجات حرارة منخفضة جدا، كما أنه يعتبر عازل جيد للصوت ويعطي السطح مقاومة كبيرة للحرائق، ويستخدم البيرلايت لعزل الأسقف والجدران والأرضيات. 

رابعا : العزل الرطوبي :
تحتاج جميع المنشآت إلى عزل مبانيها عزلا تاما من الرطوبة والمطر والمياه الجوفية والسطحية ورشحهما . فمن مساوئ تأثير الرطوبة ومياه الرشح على المباني أنها تساعد على تلف عناصر موادها الانشائية والبنائية مما يؤدي إلى قصر عمر المبنى بخلاف تعفن هذه المواد وصدور روائح كريهة منها للمنتفع بالمبنى مع تكاثر الحشرات والفئران وجلب الأمراض له كذلك.

مسببات الرطوبة Causes of Dampness: 
1. اتجاه المبني : 
الحوائط التي يصلها طرطشة المطر وقليل من أشعة الشمس تجعلها اكثر عرضة للرطوبة .
2. مياه المطر : 
وتختلف كمية سقوطها من مكان إلى آخر فعادة مياه المطر تمثل خطورة على المباني الغير مجهزة بموانع للرطوبة نظرا لقدرة المياه على الاختراق المباشر لسقف المبنى وعناصره المختلفة ولذلك يجب عزل السقف والدروة والطبانة من الرطوبة . كذلك يمكن أن تخترق الرطوبة الحوائط الخارجية المعرضة للمطر الشديد أن لم يعمل لها عازل مناسب. 
3.المياه السطحية : 
وتتكون من الأنهار أو البحار أو البرك المتكونة نتيجة المطر أو السيول ففي بعض الأحيان تختلط هذه المياه بالتربة الأرضية وتكون مناطق من الطين المشبع بالمياه قرب أساسات لمبنى وقد تتسرب بعض هذه المياه داخل التربة وتتجمع مع المياه الجوفية وبذلك يزيد منسوبها وقد تصل هذه المياه إلى أساسات المبنى القريبة منها عن طريق الخاصية الشعرية الأفقية مما يهدد المبنى إن لم يعمل له عازل من تأثير هذه المياه.
4.المياه الجوفية : 
وهي المياه المتكونة تحت سطح الأرض من خلال مسام تربتها إلى أن تستقر على منسوب يكاد يكون ثابت لكل منطقة وعلى ذلك فالتربة القريبة من المياه الجوفية تكون عادة مشبعة بالمياه ولا يفضل أن تخترق بدرومات المباني هذه المنطقة بدون عمل موانع للمياه فيها وإلا حدث البلل أو الفيضانات داخل هذه البدرومات.
5.صعود الرطوبة الأرضية : 
تصعد الرطوبة من التربة الرطبة تحت المنشأ إلى أرضية الدور الأرضي أو البدومات في المباني عن طريق الخاصية الشعرية خلال مسام التربة والمواد البنائية المستعملة في المبنى.
6. التكثيف : 
يحتوي الهواء البارد على كمية بخار أقل من الهواء الساخن وعلى ذلك فالرطوبة تترسب في الحوائط والأسقف والأرضيات عندما يبرد الهواء الساخن المحمل بالرطوبة وهذا ما يعرف بالتكثيف .
7. سوء صرف المياه في الموقع : 
يحدث تجميع لمياه الصرف تحت المبنى إذا صعب صرفها من أراضي الموقع المنخفضة وخصوصا إذا كانت تربة الموقع غير منفذه للمياه وعلى ذلك يحدث رطوبة لهذه المباني المنشأة على تلك الأراضي .
8.التشييد الحديث : 
الحوائط المشيدة حديثا تبقى في حالة رطبة لفترة معينة.
9. العمالة السيئة : 
عيوب تقفيلات وصلات السقف والطبانة وجلسات الشبابيك والأجهزة الصحية والتمديدات ….الخ حيث أن هذا يؤدي إلي السماح بنفاذ المياه داخل المبني وإحداث رطوبة , ومثال علي ذلك إهمال عمل ميول الأسطح وتصريف الأمطار أو عملها بطريقة سيئة .

تأثير الرطوبة Dampness Effect of :
• - حالة غير صحية لمستخدمي المبني.
• - عدم تماسك اللياسة في المباني. 
• - تمليح Efflorescence للحوائط والأرضيات والأسقف.
• - فساد الأخشاب المستخدمة وانحناءها.
• - تعريض الحديد المستخدم للصداء.
• - أتلاف الدهان.
• - تلف للتمديدات الكهربائية.
•- تلف التكسيات للأرضيات والحوائط والأسقف.
• - تكاثر الفطريات والبكتيريا في المبني.

مصطلحات العزل الرطوبي:
نفاذية المياه :
وهو مصطلح يعبر عن مادة لها سماحية مرور المياه وبخارها من خلال مسامها بدون انقطاع.

منفذ المياه :
وهو مصطلح يعبر عن مادة بها شقوق أو ثقوب أكبر قليلا من مسام الخاصية الشعرية والتي تسمح بمرور المياه من خلال مسامها وعكسها هي المادة الغير منفذه للمياه.

مقاوم للمياه : 
وهو مصطلح يعبر عن مادة بعض أو عدم وجود ثقوب أكبر من مسام الخاصية الشعرية وهذه المادة لا تسمح بنفاذ الرطوبة أو مرور المياه أو بخارها كما تعتبر المادة التي بها هذه الصفة عازلة للرطوبة.

مقاوم للبلل:
وهو مصطلح يعبر عن مادة لا تبل ولكنها لا تنقل المياه خلالها بواسطة الخاصية الشعرية وحدها . والمياه يمكن أن تمر خلالها تحت ضغط هيدروليكي عالي وتعتبر المادة التي بها هذه الصفة عازلة للرطوبة أيضا.

عازل المياه :
وهو مصطلح يعبر عن مادة غير مسامية للمياه أو بخارها فهي تمنع مرور المياه أو بخارها خلالها سواء كانت بضغط هيدروليكي أو بدونه وتعتبر المادة التي لها هذه الصفة شديدة العزل للرطوبة والمياه.

اختيار العزل المناسب: 
لاختيار العزل المناسب يجب مراعاة الآتي :
• ما هو الغرض من العزل؟؟ 
عزل الرطوبة الأرضية أم عزل الرطوبة للقبو وما تحته أم عزل الحمامات أم عزل الأسطح والأسقف ؟؟!!

• ما هي طبيعة الأرض المقام عليها المبني؟؟
رملية , صخرية , طينية جافة , طينية مشبعة بالمياه , ارض طينية أو رملية معرضة لتسر بات مياه من مصادر محيطة بها ؟؟!!

• ما هو نوع المناخ ؟؟
جو معتدل الرطوبة خفيف المطر أو معتدل المطر أو كثير الأمطار وعالي الرطوبة , تساقط الثلوج ؟؟!!

الطبقات العازلة للرطوبة Damp Proof Course
الغرض من الطبقات العازلة للرطوبة هو منع انتقال مسارات الرطوبة أو المياه من منطقة إلى أخرى . ويعتبر عزل الرطوبة هو الطريقة التي تمنع مرور الرطوبة أو المياه بين مواد البناء من انتشارها داخل المباني سواء كان مصدرها المباشر من المياه الجوفية أو مياه الرشح أو المطر أو كان مصدرها غير مباشر وذلك بانتقالها عن طريق الخاصية الشعرية المندفعة بالضغط الأسموزي من المصادر الرئيسية لها وتتجه حركة مسارات الرطوبة والمياه بين مواد البناء إلى أعلى في حوائط الأساسات والدور الأرضي وتتميز طريقة عزل الرطوبة Damp Proofing عن طريقة عزل المياه Water Proofing بوضع مادة عازلة للأخيرة تقاوم الضغط الهيدروستاتيكي المستمر Constant Hydrostatic Pressures
ويجب وضع طبقة أفقية عازلة فوق الأرض في الحوائط التي لها أساسات تحت منسوب الأرض الطبيعية لمنع مسارات الرطوبة الأرضية المتجهة إلى أعلى من خلال أساساتها لأن عدم منع هذه الرطوبة سوف تعرض الحوائط التي فوق الأرض الطبيعية للترطيب والعفن واتلاف تشطيبات الحوائط الداخلية والخارجية لذلك يجب أن توضع الطبقة العازلة للرطوبة فوق سطح الأرض مستمرة على كل الحوائط وتكون على ارتفاع حوالي 15 سم فوق الرصيف وقد جرى العرف عند تشييد أعمال هذه المباني أن تقف عند هذا الارتفاع مؤقتا حتى يضع على جدران المباني الطبقة العازلة لها بجانب مطابقة وضع المبنى بقوانين التخطيط والتنظيم التابعة للمنطقة المنشأ عليها .

مواد العزل للرطوبة :
أولا : مواد عازلة مرنة Flexible Materials :
• الألواح المعدنية Metal Sheets
• البيتومين Bitumen 
• السوائل العازلة Water Proofing Liquid 
• البولي ايثلين Polyethylene Membrane مواد عازلة مرنة

1.الألواح المعدنية :
وهي ألواح تستعمل لشدة عزلها للرطوبة والمياه في الأسطح والحوائط والأرضيات وصناديق الزهور وخلافه والألواح المعدنية لها أشكال كثيرة منها :
ألواح الرصاص : يجب أن يكون سمك اللوح لا يقل عن 3 مم ويزن 19.5 كجم / م2 يعتبر الرصاص مانع جيد للرطوبة والمياه وهو قابل للصدأ عند ملامسته أو دفنه في طبقة من مونة الجير أو الأسمنت وعلى ذلك يجب حماية فرخ الرصاص قبل استعماله بدهان وجهيه بالبتومين
ألواح النحاس : يجب أن يكون سمك اللوح لا يقل عن 0.25 مم ويزن 2.28 كجم / م2 ويعتبر النحاس مانع جيد للرطوبة والماء وهو مادة لدنة ومن صفاته قوة تحمله للشد العالي والانبعاج حتى عند هبوط المبنى الخفيف ومن عيوب هذه المادة أنها تصدأ وتتغير معالم سطحيها حيث يتحول الصدأ إلى لون أخضر أما استعماله في المباني فهو مثل أفرخ النحاستماما ويضاف إلى ذلك إمكان استعماله لتغطية السطح الجارجي للقباب والقبوات وخلافه لسهولة تشغيله
ألواح الألومنيوم : وهي مادة لا تصدأ بالعوامل الجوية بسرعة ويمكن معالجتها بعملية الأنودة وكسبها ألوانا كثيرة ويسهل استعمالها كمادة عازلة لكسوة الأسطح الخارجية للحوائط والقباب والقبوات نظرا لصيانتها الغير مكلفة وسهولة تركيبها بالضافة إلى ألواح الألومنيوم من أكثر الألواح المعدنية استعمالا في الوقت الحاضر نظرا لمقاومتها الشديدة للرطوبة الماء في المباني بخلاف ثمنها وخفة وزنها بالمقارنة إلى ألواح المعادن الآخرى
ألواح الحديد المجلفن : لا تصدأ إلا بعد تلف الطبقة المجلفنة التي تغطيها ويستعمل دائما في تغطية النهايات 
ألواح حديد الاستنلس استيل : مقاومة للصدأ وتستعمل عادة في الأماكن الظاهرة للعين المجردة مثل تغطية النهايات للدراوي والأسطح وخلافه
2.البتومين : 
يصنع البتومين من ما تبقى من تقطير البترول الخام حيث يتراوح قوامه بين الصلابة وشبه الصلابة كما أن لونه يتراوح بين الأسود والبني وهو قابل للذوبان في كبريتيور الكربون ومن أشهر أنواعه المستعملة في العزل الرطوبي :
البتومين المنفوخ (المؤكسد) : ينتج من خفض نسبة الهيدروجين إلى الكربون في البتومين المصهور مع انقاص الزيوت السائلة التي يحتويها بنفخ الهواء فيه مما يزيد من ليونته وقابليته للشد والثني
البتومين المتصلد ويتكون بتقطير البتومين تحت ضغط تفريغي لطرد الزيوت الثقيلة والمختلطة به فيتحول إلى حالة الصلابة ويستخدم لذلك عند وجود أحمال ميكانيكية عالية ودرجات حرارة منخفضةفي نفس الوقت ويستبعد لهذا السبب استخدامه لعزل المنشآت العادية
معلقات بتيوميتية : وهي معلقات للبتومين تنتج من تفتيته تفتيتا زائدا في الماء وفي وجود عوامل مساعدة وعند استخدام هذا النوع في أعمال البناء ينفصل فيه الماء عن البتومين
يعتبر البتومين من المواد المرنة التي تقاوم انبعاج المباني نتيجة هبوط حوائطها الطفيفة بدون تلف كما يعتبر البتومين من أكثر المواد المستعملة في الوقت الحاضر في عزل الرطوبة نظرا لرخص ثمنه عن بقية المواد العازلة الأخرى بخلاف مرونته وسهولة استعماله ومقاةمته لتكاثر الفطريات والسوس والنمل وخلافه
أما الورق أو الخيش المشبع بالبتومين والمصنع في لفائف لغرض وضعه لتغطية سمك الحوائط فيجب أن يثبت بركوب 10 سم على الأقل
3.سائل عزل المياه : 
يصنع هذا السائل من خلط مادة البرافين إلى الزيت الطيار حيث يدهن المخلوط السائل بالفرشاة أو يرش بماكينات الرش الخاصة على المناطق المنفذه للمياه أعلى منسوب الأرض ويمكن الاعتماد على هذه الطريقة لمنع الرطوبة من 3 – 5 سنوات حسب نوع المادة وكيفية تعرضها للرطوبة 
4. مشمع البولي ايثيلين : 
وهو أسود اللون ولاستعماله كمادة عازلة للمباني يجب أن يكون سمكه لا يقل عن 0.46 مم ووزنه حوالي 0.48 كجم / م2 ويعتبر البولي ايثيلين من المواد المرنة التي تقاوم الانبعاج المترتب على هبوط المباني الخفيفة بدون تلف ونظرا لرقة سمك هذا المشمع عن مادة البتومين لذلك يفضل وضعه في لحامات مونة المباني وكذلك في عزل الحمامات والأدشاش

ثانيا: مواد عازلة نصف قاسية Semi Rigid Materials :
• الإسفلت Asphalt
• لفات إسفلتية Asphalt Rolls 
• رقائق إسفلتية صغيره Asphalt Shingles مواد نصف صلبة 

1.الأسفلت : 
وهو عازل جيد للزطوبة ومن عيوبه عدم قوة تحمله للشد العالي والنبعج وخصوصا عند هبوط المبنى الخفيف لأن الأسفلت ينشرخ ويتلف ويكون عرضه لتخلل المياه وعلى ذلك لا يفضل وضعه في الأماكن إلا بعد دراسة خاصة وللأسفلت أنواع كثيرة منها الأسفلت الطبيعي والصناعي والمستيكة 

2. لفائف الأسفلت : 
تعتبر هذه النوعية ذات امكانية العزل والنهو معا فهي مصنعة من مادة أسفلتية وملصق بها مادة رقيقة جدا من المعدن مثل الألومنيوم أو خلافه وتوضع هذه المادة عادة لعزل الرطوبة والحرارة أيضا داخل الحوائط والأسقف أو على الأسطح النهائية
3. قطع رقائق اسفلتية صغيرة :
وتوجد هذه الرقائق بأشكال وألوان مختلفة حيث توضع على بعض بركوب وهذه كثيرة الاستعمال على الأسطح المائلة نظرا لسهولة تركيبها ومقاومتها للرطوبة والأمطار بجانب ثمنها المناسب بالمقارنة للمواد الأخرى وقد تعتبر هذه المادة من النوعية ذات امكانية عزل ونهو معا

ثالثا : مواد عازلة قاسية Rigid Materials
• بياض أسمنتي ( لياسة ) Cement Plaster
•إضافات لعزل المياه Water Proofing Integral
•ألواح الإردواز Slates
• ألواح الاسبيستوس الصغيرة Asbestos Shingles 
• ألواح خشبية صغيره Wood Shingle 
•ألواح الاسبيستوس الأسمنتي Asbestos Cement Board
•طبقات البلاستيك Plastic Laminates
• القرميد Tiles 
ولكل مما ورد أعلاه مميزاته وعيوبه وطرق تركيبه.

1.بياض أسمنتي : 
قد تعمل هذه المادة لتكون مواد عزل فقط أو مواد نهو وعزل معا وعلى ذلك فبياض الأسمنت يعمل غالبا بزيادة كمية الأسمنت في مخلوط الأسمنت والرمل ويوضع على حوائط الأساسات والبدرومات المعرضة للرطوبة الأرضية وغالبا يوضع هذا البياض على أساسات المباني في التربة العادية من طبقتين سمك كل منهما 0.6 سم ومن مساوئ هذه الطريقة أنه نظرا لتصلب هذه الطبقة فقد يحدث شروخ يمكن أن ترى بالعين المجردة ولذلك يجب أن تصلح وترمم باستمرار أما في حالة التربة المبللة جيدا يجب دهان البتومين على طبقة البياض الأسمني 
2.إضافات لعزل المياه : 
خلط مواد إضافية أو سوائل مانعة للمياه للخرسانة لوقف نفاذية الماء فيها ويتم عمل ذلك بملأ الفراغات بين حبيبات الخرسانة بهذه المكونات لتمنع نفاذية المياه فيها كما تسرع من العملية الكيميائية لنشاط الأسمنت ومن بين هذه المواد الدائمة الاستعمال :
الجير المائي
الدهن الحامضي
بودرة الحديد
مواد السيكا والسمنتون والمدسا والبدلو
3.ألواح الإردواز : 
استعملت هذه الألواح كثيرا عبر التاريخ لعزل الرطوبة قبل اكتشاف مادة البتومين والأسفلت وقد استعملت بوضع مدماكين من ألواح الارتواز داخل عراميس المونة الأفقية فب المباني كمادة عازلة وتعتبر هذه الطريقة غير مستعملة في الوقت الحاضر نظرا لتكاليفها الباهظة بجانب مظهرها السيئ ونظرا لصلابتها فغالبا يحدث فيها كسر عندما تهبط المباني
4.ألواح الاسبستوس الصغيرة : 
وهي اسبستوس صغيرة لها أشكال كثيرة تركب على الأسقف بركوب مناسب فوق بعضها وتعتبر هذه الألواح ذات امكانية عزل ونهو معا 
5.ألواح وشطف خشبية صغيرة : 
وهذه المواد شائعة الاستعمال في الأسطح المائلة والحوائط وتستعمل بكثرة في البلاد الباردة لأن معالجة لمقاومة الرطوبة والمياه ويساعد وجودها على أسطح مائلة طرد المياه من عليها بسرعة والعيب الوحيد فبها أنها سؤيعة الاحتراق وعلى ذلك فتعتبر من المواد ذات امكانية العزل والنهو معا
6. ألواح الاسبستوس الأسمنتي : 
وهي مواد ذات امكانية عزل ونهو معا وتصنع من خلط الأسمنت البورتلاندي خع ألياف الاسبستوس التي تكون مبللة ثم تشكل وتضغط إلى ألواح وانتاج هذا النوع يكون قوي ومعمر ومقاوم للحريق والمياه والأحماض والعفن والفطريات والحشرات وتستعمل هذه الألواح أحيانا في تكسية الأسطح المائلة وتمتاز بخفة الوزن والعزل الحراري ويصنع منها نوعين :
ألواح مموجة وتصنع بعرض 95 سم وبطول 1.2 – 1.5 متر وسمك 6 مم
ألواح مسطحة وتصنع بمقاس 1.20 * 1.22 متر وسمك 6 – 8 مم
7. طبقة البلاستيك : 
وهي مواد ذات امكانية عزل ونهو معا ولعمل طبقة البلاستيك للألواح الديكورية يغمس ورق الكرافت في محلول شمع الفيتول ثم يوضع فوق كل ذلك لوح من شمع الميلامين ولعمل الفورمايكا يوضع لوح رقيق من الألومنيوم تحت اللوح السابق عمله حيث سيزيل الحرارة بسرعة ويعمل طبقة رقيقة جدا لمقاومة اللهب وهذه الطبقة عازلة للمياه والحرارة معا 
8.القرميد المزجج : 
وهي مواد ذات امكانية عزل ونهو معا ويصنع القرميد من مادة فخارية جيدة وتستعمل لتكسية الأسطح المائلة وهو جيد لعزل الرطوبة والمياه ويساعد وجوده على أسطح مائلة طرد المياه من عليها بسرعة ويعتبر القرميد من المواد المعمرة لحماية الأسقف المائلة من مياه المطر بجانب منظره الجميل ويمكن طلاؤه ببوية الأنامل بالألوان المطلوبة كما يوجد أنواع كثيرة منه أهمها : 
القرميد اليوناني
القرميد الروماني
القرميد الأسباني
القرميد السادة

تطبيق عملي لعزل الرطوبة الأرضية : 
لعزل الرطوبة الأرضية للحوائط توضع الطبقة العازلة لحوائط المبنى على ارتفاع 15 سم من فوق رصيف المبنى الخارجي مكونة من مخلوط الأسفلت الساخن والرمل بسمك يتراوح بين 1.5 – 2 سم ثم يوضع فوقها طبقة من مونة الأسمنت والرمل بسمك 1 سم لتكملة مباني حائط المبنى كما يمكن عزل هذه الحوائط بوضع طبقات من الخيش المقطرن ودهانها بالبتومين بدلا من طبقة مخلوط الأسمنت والرمل ويحدد ذلك تبعا لرطوبة التربة كالآتي :
في المناطق التي تكون فيها التربة جافة تعمل الطبقة العازلة من طبقة واحدة من الخيش المقطرن ووجهين بتومين . 
في حالة التربة ذات الرطوبة البسيطة تعمل الطبقة العازلة من طبقتين من الخيش المقطرن وثلاثة أوجه بتومين بينهم .
في حالة التربة ذات الرطوبة العالية تعمل الطبقة العازلة من 3 طبقات من الخيش المقطرن مع أربعة أوجه بتومين بينهم.
ولعزل الرطوبة الأرضية لأرضيات الدور الأرضي والبدرومات والحمامات وما شابه ذلك توضع الطبقات العازلة بعد صب الخرسانة العادية أو المسلحة لزوم أعمال الأرضيات حيث يفرش فوقها مونة الأسمنت والزمل بسمك 2 – 3 سم وذلك لضبط أفقيتها وتنعيم سطحها ليكون أملس ثم يفرش فوقها بعد جفافها طبقة من مخلوط الأسفلت والرمل بسمك لا يقل عن 2 سم ثم يوضع عليها طبقة الرمل سمك 3 سم ثم المونة 2سم ثم البلاط 2 سم وقد تصب طبقة من الخرسانة الفينو سمك 5 سم فوق الطبقة العازلة مباشرة لحفظها ثم يوضع على الأرضية التشطيبات اللازمة.
ويمكن عزل هذه الأرضيات أيضا باستعمال الخيش المقطرن والبتومين على أن توضع لفات الخيش المقطرن خلف خلاف

تطبيق عملي لعزل الرطوبة بالأسطح الأفقية :
وطريقة عمل طبقات الأسطح الأفقية تتوقف على طبيعة الجو الذي سينشأ فيه المبنى وعموما فالطريقة الشائعة في مصر تتم بعمل مونة أسمنتية مكونة من 300 كجم أسمنت لكل 1 م3 لتسوية السطح وملأ الفراغات ةالنتوءات التي قد تكون موجودة في بلاطة الخرسانة المسلحة أو في أركان الدراوي ثم يدهن وجه بتومين ساخن على السطح كوجه تحضيري لتسهيل جودة الالتصاق ثم يفرش عليه طبقات من الخيش المقطرن مع عمل ركوب أو طيات بينهما بمقاس لا يقل عن 10 سم مع مراعاة رفع الخيش المقطرن رأسيا ولصقه بالبتومين على الدراوي العلوية بارتفاع 15سم ثم يدهن هذا السطح بالكامل بالبتومين الساخن ويوضع عليه طبقة أخرى من الخيش المقطرن متعامدة على الطبقة السابقة مع رفع هذه الطبقة أيضا على الدراوي بارتفاع 15 سم ثم يدهن وجه أخير من البتومين الساخن بالكامل ويرش عليه الرمال لحين تصلبه ثم يصب عليه خرسانة الميول وتكون عادة بسمك 3 – 7 سم ثم يوضع عليها الرمل 2 سم والمونة 2 سم والبلاط الأسمنتي 2 سم كما يمكن عمل ( بربقة ) أو تستيكه أسمنية بدلا من وضع البلاط في كلتا الحالتين يجب عمل ميول كبيروذلك لسهولة صرف مياه المطر من السطح مع عمل مرازيب لطرد المياه المتكونة في السطح إلى الخارج .

Mohammad Al Shanewr

Structural Engineer